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Abstract. A continuum model, where the invasion isdetermined by theactual local geometry 
rather than by the common random invasion in lattice models is studied forthe first time. 
Universality is confirmed by the result that the fractal dimension of the cluster i s  the same 
as in conventional percolation. 

The percolation theory approach to the problem of flow in porous media has been 
used intensively in recent years (Johnson and Sen 1984). One model which captures 

non-wetting phase, is known as invasion percolation (Wilkinson and Willemsen 1983, 
Wilkinson 1986). In this picture it is assumed that the penetration of the ‘invading’ 
phase will take place at the ‘weakest’ (or, the least resistant) ‘bond’ between the sites 
which the fluid has already reached and the sites which the fluid has not reached yet. 
Implementation of this picture was carried out on lattices (Wilkinson 1986, Leclerc 
and Neale 1988, Wilkinson and Brasony 1984) by attaching a random number to each 
site on the lattice and by then choosing an origin and letting the cluster expand 
according to the above rule. Hence, the lowest random number of the cluster’s perimeter 
sites is found and the corresponding site is added to the cluster. One may follow the 
size of the cluster S (the number of its sites) as a function of the radius of gyration 
of the cluster R, and find its fractal dimension dr ,  by using the relation (Aharony 
1986, Stauffer 1985, Balberg amd Binenbaum 1985) 

?he esnefi!i& of the flow process, i:e: the d_isp!acemen! Qf a wetting phase by a 

S - R > .  (1) 

It was found that on lattices the above invasion process yields (Wilkinson 1986, Leclerc 
and Neale 1988, Wilkinson and Brasony 1984) a cluster which has the same fractal 
dimension as that of clusters in conventional percolation (Stauffer 1985). In particular 
dr= 1.9 in two dimensions and dr=2.5 in three dimensions (Aharony 1986). 

The question arises whether the above model yields the same results when applied 
to a more realistic description of flow in natural or artificial continuum systems. While 
universal behaviour is usually expected, the possibility of finding a non-universal 
behaviour even in cluster properties cannot be a priori disregarded (Kim et al 1987). 
Following these considerations and the need for a more intuitive and less arbitrary 
description of the invasion process, we have examined the invasion process in a genuine 
continuum system (Baiberg er ai i988j. T i e  *inverted random void‘ system as used 
here consists of randomly distributed permeable spheres with a relatively small hard 
core (which does not alter significantly the conventional percolation threshold, Balberg 
and Binenbaum 1987). The sphere concentration is well above the conventional 
percolation threshold (corresponding to an average of B, = 4.5 bonded neighbours in 
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two dimensions and B, = 2.8 in three dimensions) (Balberg and Binenbaum 1987). The 
geometry of the model is illustrated in figure 1. TWO spheres in the model are considered 
bonded if there is an overlap between their soft shells. In our choice of B (the average 
number of bonds per sphere, see below) all spheres are practically connected and the 
situation resembles the preliminary lattice site system on which the invasion process 
is carried out (Wilkinson and Willemsen 1983, Wilkinson 1986, Leclerc and Neale 
1988, Wilkinson and Brasony 1984). After the first sphere is picked one searches for 
the overlapping sphere which is closest to this (the origin) sphere. The bond between 
these two is then the bond of least resistance (Balberg et nl 1988) (closest and thus of 
largest cross section) and it is thus susceptible to invasion. The next stage is to look 
for the next closest sphere to either one of the two spheres. This sphere becomes the 
third member of the cluster and the process is repeated. During the process both S 
and R, are recorded, where R, is defined as (Stauffer 1985, Balberg and Binenbaum 
1985): 
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and ru is the distance between two members of the cluster. In figure 2 we show for 
illustration the centres of the spheres which form such a two-dimensional invasion 
percolation cluster. 

The simulation procedure was as follows. We implanted randomly (Balberg and 
Binenbaum 1985, 1987) spheres of radius a + b where a was the hard core radius and 
b was the soft shell thickness. In all cases we have chosen the ratio b / a  = 0.8. In two 
dimensions we have used 8000 disks and in three-dimensions 18 000 spheres. These 

Figure 1. T h e  geometry of the ‘inverted random void system used here as a model of 
invasion percolation in the continuum. The lines between the spheres centres represent 
existing bonds. We assume that invasion taker place along the shortest (larger cross section) 
bonds. 
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Figure 2. An illustration of a two-dimensional invasion percolation continuum cluster 
generated in the present work. 

concentrations correspond to 1.5 times the conventional percolation threshold con- 
centration in two dimensions and to five times the threshold concentration in three 
dimensions. We created 20 samples (for each dimension) and for each sample we 
performed 50 realizations (i.e. we have followed S ( R , )  for SO different origins). The 
result of the simulations are summarized in figure 3. The average R,  for a given S is 
given by the data points and the corresponding standard deviations are given by the 
error bars. The slope of the log(S) against log(R,) plot yields the fractal dimension 
dr .  These dimensions were found to be d ,=  1.88 for the two-dimensional systems and 
dr = 2.1 for the three-dimensional systems. The regression coefficient calculated for the 
line connecting the data points is practically 1. These results are very close to those 
obtained for invasion percolation on lattices and in conventional percolation (Aharony 
1986, Stauffer 1985, Balberg and Binenbaum 1985). Other averaging procedures yielded 
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Figure 3. The size of the Cluster S. as a function of its gyralion radius R, (measured in 
units of U, the hard sphere radius). The data points are the averages of 20 samples limes 
50 realizations and the error bars indicate the standard deviations. 
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somewhat different results but have confirmed the above conclusion. For example, 
determining d ,  for each realization separately and then carrying the averages yielded 
dr=1.85*0.22 in two dimensions and dr=2.61*0.42 in three dimensions. In the 
averaging scheme some of the slopes were found to yield dr> d where d is the Euclidean 
dimension. Since dr larger than the Euclidean dimension is a result of cases where the 
origin is on a finite cluster (the cluster 'grows within itself'), we have also calculated 
the average dr by disregarding these cases. This procedure yielded the results d,= 
1.75*0.14 in two dimensions and dr=2.48*0.28 in three dimensions. 

In conclusion, we have suggested that a large cross section between pores is a more 
realistic definition of a 'weak' bond than the random number attached to a site in the 
lattice models of invasion percolation. The overall characteristics of this continuum 
model are, however, similar to those found in lattice invasion percolation. In particular 
the fractal dimension of the cluster in continuum invasion percolation is the same as 
in conventional lattice and conventional continuum percolation. 
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